Integral of a compound equation (or otherwise finding the area under a graph): f(x) = 10x*(x^(0.5) - 2)

This can be done 'by parts' or by expanding. In this case it would be easier to expand as it is possible to deal with terms individually here.
This becomes: 10xx1/2 - 10x2
                      = 10x3/2 - 20x
We know this because powers of the same value ( x in this case) work additively when multipled, so xa*xb = xa+b. The other term is also just multipled as normal, two lots of 10x = 20x.
When integrating, we may remember this as the opposite of a differential, so that previously the power must have been 1 higher, and the factor is a factor of the power lower. This simply means that the integral of xa = (1/(a+1))xa+1. This then means that the integral with respect to x is:
(10/(5/2))x5/2 - (20/2)x2 + Constant.  This can be simplified (at this point I would show the simplificiations using either a physical whiteboard or online tools)

If we have the limits of the function, we can put those in too, remembering that we substitute it as f(upper limit) - f(lower limit) for a function of f(x). This would also find the area under a graph, if done correctly, remembering to also separate the limits based on if its above or below an axis (would need visual representation, again easy to show on a whiteboard).

RD
Answered by Roden D. Maths tutor

3890 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)


Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning