Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.

The trick to solving this is to use the trig identity sin(a+b) = sin(a)cos(b) + sin(b)cos(a) From the identity above, we can write rewrite Rsin(x+c) as follows: Rsin(x+c) = R[sin(x)cos(c) + sin(c)cos(x)] Expanding out the bracket gives: Rsin(x+c) = Rsin(x)cos(c) + Rsin(c)cos(x) Comparing the right-hand side of the above equation to the form given in the question: Rcos(c)sin(x) + Rsin(c)cos(x) = asin(x) + bcos(x) Then we can equate the coefficients of sin(x) and cos(x), giving 2 equations: 1: Rsin(c) = b 2: Rcos(c) = a Divinding equation 1 by equation 2, and using the identity sin(x) / cos(x) = tan(x): Rsin(c)/Rcos(c) = b/a (Note the Rs will cancel) tan(c) = b/a c = tan-1(b/a) The value of c can then be subsituted into either of equations 1 or 2 to give the value of R.

LH
Answered by Louis H. Maths tutor

7017 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact value of sin(75°). Give your answer in its simplest form.


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


Solve the equation: log5 (4x+3)−log5 (x−1)=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning