Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.

The trick to solving this is to use the trig identity sin(a+b) = sin(a)cos(b) + sin(b)cos(a) From the identity above, we can write rewrite Rsin(x+c) as follows: Rsin(x+c) = R[sin(x)cos(c) + sin(c)cos(x)] Expanding out the bracket gives: Rsin(x+c) = Rsin(x)cos(c) + Rsin(c)cos(x) Comparing the right-hand side of the above equation to the form given in the question: Rcos(c)sin(x) + Rsin(c)cos(x) = asin(x) + bcos(x) Then we can equate the coefficients of sin(x) and cos(x), giving 2 equations: 1: Rsin(c) = b 2: Rcos(c) = a Divinding equation 1 by equation 2, and using the identity sin(x) / cos(x) = tan(x): Rsin(c)/Rcos(c) = b/a (Note the Rs will cancel) tan(c) = b/a c = tan-1(b/a) The value of c can then be subsituted into either of equations 1 or 2 to give the value of R.

Answered by Louis H. Maths tutor

5951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 4x^3 -1 + 2x^1/2 (where x>0) find dy/dx.


How can I calculate the maximum value of the compound angle formulae Rsin(x+a) and Rcos(x+a)?


Express (5-√ 8)(1+√ (2)) in the form a+b√2 , where a and b are integers


What is the chain rule and how is it used?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences