You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.

Apparatus: The wire is secured by a clamp and clamp stand A hanging mass is attached to the end of it, where the mass hung can be changed A Vernier scale or ruler may be attached to the apparatus to measure the distance the wire has extended Measurements: The initial length of the wire can be measured using a ruler (or metre rule) The wire diameter can be measured with a micrometer The mass attached can be measured using weighing scales (or by using known masses) The extension can be measured using a Vernier scale (or ruler) for a range of different masses Calculating Young’s Modulus: E= stress/strain                     So E is the gradient of a stress-strain graphStress=F/A=mg/πr2 Strain= extension/initial length            Readings for extension can therefore be taken for different masses.   The stress and strain can be calculated and plotted on a graph, and E can be measured from its gradient.

RH
Answered by Robert H. Physics tutor

7385 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain the photo-electric effect and how the particle theory of light explains the phenomena. State the equation used to the determine the kinetic energy of a photo-electron and explain the origin of the terms used in your equation.


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


What is magnetism?


For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences