Prove that (2*a^2 + 7a + 3)/(a + 3) is an odd number for any positive integer number, a.

We see that the numerator is a quadratic, so we factorise it to obtain:

(2a + 1)(a + 3)/(a + 3) = 2a + 1

Since a is a positive integer, we know that 2*a + 1 will always be an odd number.

Answered by Nadia M. Maths tutor

2888 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the brackets: (x + 5)(x - 3)?


What can I do to revise maths?


Write x^2 – 10x + 12 in the form (x – a)^2 + b , where a and b are integers.


A) Raf, Jasmin and Carlos swim lengths of the pool for charity. Raf swims 30 more lengths than Jasmin. Jasmin swims four times as many lengths as Carlos. Altogether they swim 372 lengths. How many lengths each person swim?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences