Prove that (2*a^2 + 7a + 3)/(a + 3) is an odd number for any positive integer number, a.

We see that the numerator is a quadratic, so we factorise it to obtain:

(2a + 1)(a + 3)/(a + 3) = 2a + 1

Since a is a positive integer, we know that 2*a + 1 will always be an odd number.

NM
Answered by Nadia M. Maths tutor

3007 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3 teas and 2 coffees have a total cost of £7.80. 5 teas and 4 coffees have a total cost of £14.20. Work out the cost of one tea and the cost of one coffee.


Over a year, the number of rabbits in a field increases by 25% and then by a further 30%. Originally there were 200 rabbits in the field how many were there at the end?


A = {multiples of 5 between 14 and 26}. B = {odd numbers between 14 and 26}. List the members of A∪B and A∩B.


Make x the subject of the equation y = {2(1+x)}/(3x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences