Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.

Begin by differentiating each term w.r.t x: d/dx(x^3) + d/dx(yx^2) = d/dx(y^2) + d/dx(1). the terms x^3 and 1 are simple enough to start of with: d/dx(x^3) = 3x^2 and d/dx(1) = 0. Next use the chain rule for the term y^2: d/dx(y^2) = d/dy(y^2) * dy/dx = (2y)dy/dx For the last term, yx^2, we differentiate using the product rule: d/dx(yx^2) = x^2(d/dx)y + y(d/dx)x^2 = 2xy + x^2(dy/dx) (Note that for y(d/dx)x^2 we use the chain rule again). Therefore with all terms differentiated we have: 3x^2 + 2xy + x^2(dy/dx) = (2y)dy/dx. Now we have to rearrange to get dy/dx: (2y - x^2)(dy/dx) =  3x^2 + 2xy ===> dy/dx = (3x^2 + 2xy)/(2y - x^2)

Answered by Marlon H. Maths tutor

4153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0


A rollercoaster stops at a point with GPE of 10kJ and then travels down a frictionless slope reaching a speed of 10 m/s at ground level. After this, what length of horizontal track (friction coefficient = 0.5) is needed to bring the rollercoaster to rest?


How can I find the derivative of y = tan(x)?


What is exactly differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences