Use implicit differentiation to find dy/dx of a curve with equation x^3 + yx^2 = y^2 + 1.

Begin by differentiating each term w.r.t x: d/dx(x^3) + d/dx(yx^2) = d/dx(y^2) + d/dx(1). the terms x^3 and 1 are simple enough to start of with: d/dx(x^3) = 3x^2 and d/dx(1) = 0. Next use the chain rule for the term y^2: d/dx(y^2) = d/dy(y^2) * dy/dx = (2y)dy/dx For the last term, yx^2, we differentiate using the product rule: d/dx(yx^2) = x^2(d/dx)y + y(d/dx)x^2 = 2xy + x^2(dy/dx) (Note that for y(d/dx)x^2 we use the chain rule again). Therefore with all terms differentiated we have: 3x^2 + 2xy + x^2(dy/dx) = (2y)dy/dx. Now we have to rearrange to get dy/dx: (2y - x^2)(dy/dx) =  3x^2 + 2xy ===> dy/dx = (3x^2 + 2xy)/(2y - x^2)

MH
Answered by Marlon H. Maths tutor

4892 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 4/x^2


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning