For parabolic motion: vertical and horizontal components can be treated independently. x represents horizontal motion, which obeys constant velocity equations, y denotes vertical motion, which obeys the constant acceleration suvat equations, with a equal to g. For this question, the upward direction is taken as positive.
a) Max height: Use s to denote the height reached by the particle above the launch point, we can use the equation v2=u2 + 2as. At its maximum height, the vertical velocity of the particle, vy=0. u=uy=u sin 30 = 14sin30 = 7m/s and a= -9.8m/s2. Rearranging the equation gives s=(v2-u2)/2a = (0-(7)2) / 2(-9.8)= -49 / -19.6 = 5/2 = 2.5m. However, we want height relative to the bottom of the cliff, so we must add 87.5m. Therefore, the maximum height reached is 2.5 +87.5 =90m
b) Horizontal range: sy = vertical change in displacement relative to launch point = drop in height of cliff height = -87.5m, uy = 14sin30 = 7m/s, a= -9.8m/s2. Using s=ut +(at2)/2 and substituting in the given values, gives -87.5=7t-4.9t2, rearranged to give 4.9t2-7t-87.5=0. This can be solved to give t=5s as t is greater than 0. To find the range, the horizontal distance must be calculated. For constant velocity motion: velocity=(change in displacement)/time, or vx = sx/t. Rearranging gives sx=vx t. vx = u cos30 = 14 cos30 m/s and t=5s, so sx=5 x 14 cos30 = 70cos30 = (70/2) sqrt(3) = 35 sqrt(3) = 60.6m
2765 Views
See similar Further Mathematics A Level tutors