Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2

This question is an example of integrating to find the area underneath a curve between two points. We begin by intergrating the equation. Firstly, to integrate 3xwe increase the indice/power by one unit and then divide whatever the x was multiplied with by this new power term. With this example, the xwould increase to xand then we would divide the 3 by this new power term (3/3 = 1) so we would be left with 1xor simply x3. We would do the same with the -2x which would leave us with -x2. For the constant, 2, we would multiply this by x, giving us 2x. We can check our answer by differentiating it (the opposite of integration); if it leaves us with the same equation as that given in the question, then our answer is correct. For integration questions within a limit, we do not include the + c (+ constant) in our answer.

The second part of our solution involves us calculating the area between the curve and between the limits of 0 and 2. Our answer from the previous part of the solution can be written like so: [x3 - x+ 2x]02. We then substitute the limits into the xs and subtract the bottom limit subtituted equation from the top: (23 - 22 +22) - (0- 0+ 20) = 8 - 0 = 8. 

The area beneath the curve between the two limits is 8.

TC
Answered by Thomas C. Maths tutor

4662 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the derivative of x^x


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


The element of a cone has length L. For what height H (with respect to L) will the volume of the cone be the largest?


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning