Answers>Maths>IB>Article

How to find a modulus and argument of w that is a quotient of z1 and z2 such that z1 = 1 + root(3)i and z2 = 1+ i using modulus-argument form?

First of all, transform both zand z2 into modulus-argument form. To obtain that form, you are going to need a modulus (the length of the hypotenuse on the Argand diagram) and argument (the angle between opposite and adjacent). Modulus can be simply calculated using the Pythagoras's equation, so: modulus of z1 is equal to the root of the sum of the squared lengths of both opposite and adjacent. In this case, modulus z1 = 2 and modulus z2 = root of 2. Getting angles is easy too. Simply calculate arctan of imaginary/real, but remember to draw the triangle on the diagram, as it is easy to make a mistake here, especially when dealing with angles in 3rd and 4th quadrants. The obtained angles should be pi/3 and pi/4.
Now onto the modulus-argument form. The general formula is: mod(z)[cos(arg) + isin(arg)], so try following that.
After doing so, to get mod(w) divide mod(z1) and mod(z2) as w is a quotient. The argument is arg(z1) - arg(z2).

PS
Answered by Piotr S. Maths tutor

4006 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Let f(x)= x^2+4, and g(x)= 3x; Find g(f(1))


Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?


Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4


What does a derivative mean and why does setting it equal to zero allow us to find the minima/maxima of a function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning