c is a positive integer. Prove that (6c^3+30c) / ( 3c^2 +15) is an even number.

Our starting equation (6c3+30c) / ( 3c2 +15)  can be factorised by 6c on the top row and 3 on the bottom row so you get 6c(c2+5) / 3(c2+5). Because (c2+5) is on the top and bottom row it can be cancelled out so you have 6c / 3.  This can be further simplified as 6c / 3 can be split into 6/3 x c/1 and because 6/3 = 2 this gives us 2 x c/1 = 2 x c = 2c. Therefore the answer will be a multiple of 2, so the answer will be even.

Answered by Lenya A. Maths tutor

5526 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 2x^2 + 6x + 4 = 0 for x using the quadratic formula.


How do I factorise 3xy^2 – 6xy fully?


In a class of 30, the ratio of boys to girls is 2 : 3 , how many girls are there?


X^2 - 4y = -8 y=3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences