c is a positive integer. Prove that (6c^3+30c) / ( 3c^2 +15) is an even number.

Our starting equation (6c3+30c) / ( 3c2 +15)  can be factorised by 6c on the top row and 3 on the bottom row so you get 6c(c2+5) / 3(c2+5). Because (c2+5) is on the top and bottom row it can be cancelled out so you have 6c / 3.  This can be further simplified as 6c / 3 can be split into 6/3 x c/1 and because 6/3 = 2 this gives us 2 x c/1 = 2 x c = 2c. Therefore the answer will be a multiple of 2, so the answer will be even.

Answered by Lenya A. Maths tutor

5477 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Can you help me solve the equation x^2+3x-5


What is the Pythagoras Theorem?


Workout 2 1/7 + 1 1/4


The nth term of a sequence is 8(2^n + 2^(6n-7)). a) Without a calculator, find the 2nd term of this sequence, b)​​​​​​​ Express the formula in the form 2^x + 2^y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences