Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.

de Moivre's: (cos(x)+isin(x))n=cos(nx)+isin(nx) set n=2 (cos(x)+isin(x))2=cos2(x)+2isin(x)cos(x)-sin2(x), which, according to de Moivre's cos2(x)+2isin(x)cos(x)-sin2(x)=cos(2x)+isin(2x) We notice that on both the RHS and LHS we have real and complex terms, which means that the real part on one side is equal to the real part of the other, and the same stands for the imgainary bits: cos(2x)=cos2(x)-sin2(x) sin(2x)=2sin(x)cos(x) These identities are the correct ones.

Related Further Mathematics A Level answers

All answers ▸

The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


What is De Moivre's theorem?


How does proof by mathematical induction work?


Find the general solution to y''+2y'-3y=x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences