Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.

de Moivre's: (cos(x)+isin(x))n=cos(nx)+isin(nx) set n=2 (cos(x)+isin(x))2=cos2(x)+2isin(x)cos(x)-sin2(x), which, according to de Moivre's cos2(x)+2isin(x)cos(x)-sin2(x)=cos(2x)+isin(2x) We notice that on both the RHS and LHS we have real and complex terms, which means that the real part on one side is equal to the real part of the other, and the same stands for the imgainary bits: cos(2x)=cos2(x)-sin2(x) sin(2x)=2sin(x)cos(x) These identities are the correct ones.

Related Further Mathematics A Level answers

All answers ▸

Prove that (AB)^-1 = B^-1 A^-1


Simplify i^{4}?


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences