In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.

In order to see what the problem is, I will attempt to find this speed. 350keV=5.6110-14 J Ek=1/2 * mv2 =>  v=sqrt(2Ek/m) By plugging in numbers, we find that the velocity of the electron, v=3.51108. This velocity is bigger then the speed of light c=3108, and it is a known fact that nothing can travel faster than light. This means that relativistic effects must've taken place, which prevented the particle from reaching the speed of light, but allowed it to have such a high energy.

CP
Answered by Cezar P. Physics tutor

2195 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A photon has an energy of 1.0 MeV. Calculate the frequency associated with this photon energy. State an appropriate unit in your answer.


An electron moving at 1000 m/s annihilates with a stationary positron. What is the frequency of the single photon produced?


Please explain how polarisation of waves occurs?


How can the average speedx of a gas molecule be derived?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning