In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.

In order to see what the problem is, I will attempt to find this speed. 350keV=5.6110-14 J Ek=1/2 * mv2 =>  v=sqrt(2Ek/m) By plugging in numbers, we find that the velocity of the electron, v=3.51108. This velocity is bigger then the speed of light c=3108, and it is a known fact that nothing can travel faster than light. This means that relativistic effects must've taken place, which prevented the particle from reaching the speed of light, but allowed it to have such a high energy.

CP
Answered by Cezar P. Physics tutor

2256 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cannon ball is shot at an angle of 60 degrees from a cliff of height 50m, if it's inital speed is 20ms^-1 what horizontal distance does it travel before hitting the ground.


One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?


How can you tell if a reaction will happen?


A cup of tea contains 175 g of water at a temperature of 85.0 °C. Milk at a temperature of 4.5 °C is added to the tea and the temperature of the mixture becomes 74.0 °C. What is the internal energy lost by the water? What is the mass of the milk?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning