In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.

In order to see what the problem is, I will attempt to find this speed. 350keV=5.6110-14 J Ek=1/2 * mv2 =>  v=sqrt(2Ek/m) By plugging in numbers, we find that the velocity of the electron, v=3.51108. This velocity is bigger then the speed of light c=3108, and it is a known fact that nothing can travel faster than light. This means that relativistic effects must've taken place, which prevented the particle from reaching the speed of light, but allowed it to have such a high energy.

Answered by Cezar P. Physics tutor

1912 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would I derive Kepler's third law from Newton's law of gravitation and the equations of circular motion?


A box initially at rest is on a plank, of length 5m, that is elevated at an angle such that tan(a)=3/4. When it reaches the end of the plank it has velocity 5ms^-1. Calculate the average frictional force on the box.


Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.


Why does current split between branches of a parallel circuit, but voltage remains the same for each branch?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences