Expand (2x+3)^4

We will you use Pascal's triangle in order to find coefficients:         1        1  1       1 2 1     1 3  3 1    1  4  6  4  1 so, our coefficients will be 1,4,6,4,1 now, let's expand: (2x+3)4=(2x)4+4*(2x)33+6(2x)232+4(2x)*33+34=16x4+96x3+216x2+216x+81 (2x+3)4=116x4+96x3+216x2+216x+81

Related Further Mathematics GCSE answers

All answers ▸

Factorise 6x^2 + 7x + 2


f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences