Expand (2x+3)^4

We will you use Pascal's triangle in order to find coefficients:         1        1  1       1 2 1     1 3  3 1    1  4  6  4  1 so, our coefficients will be 1,4,6,4,1 now, let's expand: (2x+3)4=(2x)4+4*(2x)33+6(2x)232+4(2x)*33+34=16x4+96x3+216x2+216x+81 (2x+3)4=116x4+96x3+216x2+216x+81

Related Further Mathematics GCSE answers

All answers ▸

Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Solve x^(-1/4) = 0.2


Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences