Expand (2x+3)^4

We will you use Pascal's triangle in order to find coefficients:         1        1  1       1 2 1     1 3  3 1    1  4  6  4  1 so, our coefficients will be 1,4,6,4,1 now, let's expand: (2x+3)4=(2x)4+4*(2x)33+6(2x)232+4(2x)*33+34=16x4+96x3+216x2+216x+81 (2x+3)4=116x4+96x3+216x2+216x+81

Related Further Mathematics GCSE answers

All answers ▸

This is a question from a past paper: https://prnt.sc/r6jnxc


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


x^3 + 2x^2 - 9x - 18 = (x^2 - a^2)(x + b) where a,b are integers. Work out the three linear factors of x^3 + 2x^2 - 9x - 18. (Note: x^3 indicates x cubed and x^2 indicates x squared).


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences