Solve for the coordinates where lines A and B intersect. A: y=x+4 B: y=0.5x+3.5

The point of intersection is a point where the variables y and x will be the same in both A and B equations. This is because the point of intersection has the same coordinates for both lines. So YA = YB and so x + 4 = 0.5x + 3.5. 

Given that x + 4 = 0.5x + 3.5: subtract 0.5x from both sides of the equation, x + 4 - 0.5x = 0.5x + 3.5 - 0.5x. 

New equation: 0.5x + 4 = 3.5, We now have the x variable on one side only, making the equation easier to solve. 

Now manipulate the equation in a way to get the variables and non-variables on opposing sides (subtract 4): 0.5x + 4 - 4 = 3.5 - 4.

New equation: 0.5x = -0.5

Final step to solve for x: Because x is being multiplied by 1/2 on the LHS and we need x to be multiplied by 1 to get it on its own, we need to multiply the LHS by 2: 0.5x * 2 = -0.5 * 2

New equation: x = -1.

Now we know what x equals, we can substitute the -1 back into the original line equations (choose A or B) to find y.

into A: y = (-1) + 4 so y = 3.

To finish, we have found x and y and so have found the point at which the two lines intersect. 

X = -1, Y = 3 OR (-1,3)

Answered by Harvey P. Maths tutor

3543 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise: 3x^2+13x-30


The probability that it rains on a given day is 0.15. The probability that a football match is cancelled when it rains is 0.65. If it doesn't rain, the probability that the match is not cancelled is 0.95. What is the chance that the match is cancelled?


How do I calculate negative powers?


Solve the simultaneous equation: 3x-12y=6 , 18y=9x+10y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences