Using the question, first use de Moivre's theorem to say (cos x + i sin x)^5 = cos 5x + isin 5x. Now we can use a binomial expansion on the RHS to say
cos 5x + isin 5x = cos5 x + 5i cos4 x sin x +10i2 cos3 x sin2 x + 10i3 cos2 x sin3 x + 5i4 cos x sin4 x + i5sin5 x
= cos5 x + 5i cos4 x sin x -10 cos3 x sin2 x - 10i cos2 x sin3 x + 5 cos x sin4 x + i sin5 x
since i2 = -1 , i3 = -i , i4 = (i2)2 = 1,
Next, equating imaginary parts of the above expression we find:
sin 5x = 5 cos4 x sin x - 10 cos2 x sin3 x + sin5 x (1)
Using the identity, sin2 x + cos2 x = 1 rearranged as cos2 x = 1 - sin2 x, we can say
cos4 x = (1 - sin2 x)2= 1 - 2 sin2 x + sin4 x , substituting this into (1) expanding and collecting terms we get the final answer:
sin 5x = 16 sin5 x - 20 sin3 x + 5 sin x
32623 Views
See similar Further Mathematics A Level tutors