Farmer Joe has a rectangular pen to hold his animals. The pen’s length is 5 meters longer than the width. The pen’s area is 84 meters. Find it’s width.

Step 1 define the variables:

L stands for the length, W stands for the width

Step 2 write what we know algebraically: 

Since the length is 5 meters longer than the width we have L = W + 5.

Finally, the area is 84 meters so we have that 84 = W*L

Step 3 Solve :

Let’s first plug + 5 into our Area equation to get 84 = W*(W+5) = W2 + 5W  which is the same as saying 

0 = W2 +5W - 84. Solving the quadratic equation we get 0 = (W - 7)(W + 12) which means W = 7, -12.

However, Width obviously cannot be a negative number. Thus, the width of the rectangle is 7 meters.

Step 4 Check your work:

if the width is 7 then the length must be 7+5 =12 and the area must be 12*7 = 84. Thus the width of the pen is 7 meters.

Answered by Omar B. Maths tutor

2450 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 3x + y = 11, 2x + y = 8


Solve the following equation by factorisation: x^2 - 2x -15 = 0


Factorise 3x^2 + 15x


Solve the simultaneous equations: 2x + 3y = 5 and 3x + 4y = 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences