Farmer Joe has a rectangular pen to hold his animals. The pen’s length is 5 meters longer than the width. The pen’s area is 84 meters. Find it’s width.

Step 1 define the variables:

L stands for the length, W stands for the width

Step 2 write what we know algebraically: 

Since the length is 5 meters longer than the width we have L = W + 5.

Finally, the area is 84 meters so we have that 84 = W*L

Step 3 Solve :

Let’s first plug + 5 into our Area equation to get 84 = W*(W+5) = W2 + 5W  which is the same as saying 

0 = W2 +5W - 84. Solving the quadratic equation we get 0 = (W - 7)(W + 12) which means W = 7, -12.

However, Width obviously cannot be a negative number. Thus, the width of the rectangle is 7 meters.

Step 4 Check your work:

if the width is 7 then the length must be 7+5 =12 and the area must be 12*7 = 84. Thus the width of the pen is 7 meters.

Answered by Omar B. Maths tutor

2498 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 11 pens in a box. 8 are black and 3 are red. Two pens are taken out at random without replacement. Work out the probability that the two pens are the same colour.


How to solve the simultaneous equations of 3x + 2y = 9 and x-y = 3


Sarah used to earn 80£ per week, however she was given a 5% pay rise, what are her weekly earnings now?


Solve x^2 = 4(x-3)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences