How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x

Start with the LHS:

(cos^4x - sin^4x) / cos^2x 

Recognise the difference of two squares on the top line, which simplifies to (cos^2x - sin^2x)(cos^2x + sin^2x):

(cos^2x - sin^2x)(cos^2x + sin^2x) / cos^2x

Because of the identity sin^2x + cos^2x = 1, the second bracket (cos^2x + sin^2x) simplifies to 1:

(cos^2x - sin^2x) / cos^2x

Separate the two parts of the numerator:

(cos^2x / cos^2x) - (sin^2x / cos^2x)

These parts both simplify to 1 and tan^2x respectively:

1 - tan^2x 

= RHS

Answered by Jack M. Maths tutor

17762 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


differentiate with respect to 'x' : ln(x^2 + 3x + 5)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences