How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x

Start with the LHS:

(cos^4x - sin^4x) / cos^2x 

Recognise the difference of two squares on the top line, which simplifies to (cos^2x - sin^2x)(cos^2x + sin^2x):

(cos^2x - sin^2x)(cos^2x + sin^2x) / cos^2x

Because of the identity sin^2x + cos^2x = 1, the second bracket (cos^2x + sin^2x) simplifies to 1:

(cos^2x - sin^2x) / cos^2x

Separate the two parts of the numerator:

(cos^2x / cos^2x) - (sin^2x / cos^2x)

These parts both simplify to 1 and tan^2x respectively:

1 - tan^2x 

= RHS

Answered by Jack M. Maths tutor

17012 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In the triangle ABC, AB = 16 cm, AC = 13 cm, angle ABC = 50 and angle BCA= x Find the two possible values for x, giving your answers to one decimal place.


Sketch, on a pair of axes, the curve with equation y = 6 - |3x+4| , indicating the coordinates where the curve crosses the axes, then solve the equation x = 6 - |3x+4|


Find the derivative of A^4 + 2A^2 - 3A + 4


i) Simplify (2 * sqrt(7))^2 ii) Find the value of ((2 * sqrt(7))^2 + 8)/(3 + sqrt(7)) in the form m + n * sqrt(7) where n and m are integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences