How do I show that (cos^4x - sin^4x) / cos^2x = 1 - tan^2x

Start with the LHS:

(cos^4x - sin^4x) / cos^2x 

Recognise the difference of two squares on the top line, which simplifies to (cos^2x - sin^2x)(cos^2x + sin^2x):

(cos^2x - sin^2x)(cos^2x + sin^2x) / cos^2x

Because of the identity sin^2x + cos^2x = 1, the second bracket (cos^2x + sin^2x) simplifies to 1:

(cos^2x - sin^2x) / cos^2x

Separate the two parts of the numerator:

(cos^2x / cos^2x) - (sin^2x / cos^2x)

These parts both simplify to 1 and tan^2x respectively:

1 - tan^2x 

= RHS

JM
Answered by Jack M. Maths tutor

18847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate 4x^3 + 3x


What is Differentiation?


Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


y =(4x)/(x^2+5) (a) Find dy/dx, writing your answer as a single fraction in its simplest form. (b) Hence find the set of values of x for which dy/dx<0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning