A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.

y′=3x2 −6x

use of y′ = 0

0= 3x^2 - 6x

0= 3x(x-2)

therefore either x=0 or x=2

when x=0 y=1, when x=2 y=-3

(0, 1) or (2, −3) 

y''=6x-6

when x=0 y''=6(0)-6 = -6

as y'' is negative this means at x=o the curve is at a maximum

whgen x=2 y''=6(2)-6=6

as y''is positive, this means at x=2 the curve is at a maximum

CB
Answered by Charlotte B. Maths tutor

7110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How was the quadratic formula obtained.


Split the following expression into partial fractions of the form A/(x-3) + B/(4x+2) : (19x-15)/(4x+2)(x-3)


Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


Find the area bounded by the curve x^2-2x+3 between the limits x=0 and x=1 and the horizontal axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning