Differentiate with respect to x, x^2*e^(tan(x))

Use the product rule: d/dx(uv) = uv' + u'v, with u = x^2 and v = e^(tan(x)), so that u' = 2x and v' = sec^2(x) * e^(tan(x)), and so the answer is 2x * e^(tan(x)) + x^2 * sec^2(x) * e^(tan(x)) .

JH
Answered by Jakub H. Maths tutor

5293 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


Line AB has equation 6x + y - 4 = 1. AB is perpendicular to the line y = mx + 1, find m.


Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


Given that y = 4x^3 – 5/(x^2) , x =/= 0, find in its simplest form dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning