Differentiate with respect to x, x^2*e^(tan(x))

Use the product rule: d/dx(uv) = uv' + u'v, with u = x^2 and v = e^(tan(x)), so that u' = 2x and v' = sec^2(x) * e^(tan(x)), and so the answer is 2x * e^(tan(x)) + x^2 * sec^2(x) * e^(tan(x)) .

JH
Answered by Jakub H. Maths tutor

4638 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A tank is filled with water up to the height H0. At the bottom of the tank, there is a tap which is opened at t=0. How does the height of liquid change with time?(Hint: dH/dt is proportional to -H)


Given that y = x^2 +2x + 3, find dy/dx.


How do I find the area under a curve between two points?


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences