Differentiate with respect to x, x^2*e^(tan(x))

Use the product rule: d/dx(uv) = uv' + u'v, with u = x^2 and v = e^(tan(x)), so that u' = 2x and v' = sec^2(x) * e^(tan(x)), and so the answer is 2x * e^(tan(x)) + x^2 * sec^2(x) * e^(tan(x)) .

JH
Answered by Jakub H. Maths tutor

5354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142


Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0


∫ (ln(x)/(x*(1+ln(x))^2) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning