Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.

To find the area under a curve that is bounded by the x-axis you simply need to integrate the equation of the curve between the limits, so for this equation we will integrate y=x3-3x2+2x with 1 as our upper limit and 0 as our lower limit. To integrate an expression you add 1 to the power and divide by the new power, so the integral of x3-3x2+2x is (1/4)x4-x3+x2. We then substitute x=1 and x=0 into the expression and subtract the resulting values from eachother. When x=1, (1/4)x4-3x3+x2=1/4 and when x=0, (1/4)x4-3x3+x2=0. (1/4)-0=1/4 and so that is our final answer to the question.

Answered by Jack T. Maths tutor

12557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the function y = (1/3)x^3 + (1/2)x^2 - 6x + 15


Can you please explain how to expand two brackets, eg. (3x-7)(5x+6)


What is the integral of (cos(x))^2?


The curve C has an equation y = sin(2x)cos(x)^2. Find dy/dx. Find normal to curve at x = pi/3 rad, giving answer in exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences