Find the area bounded by the curve x^3-3x^2+2x and the x-axis between x=0 and x=1.

To find the area under a curve that is bounded by the x-axis you simply need to integrate the equation of the curve between the limits, so for this equation we will integrate y=x3-3x2+2x with 1 as our upper limit and 0 as our lower limit. To integrate an expression you add 1 to the power and divide by the new power, so the integral of x3-3x2+2x is (1/4)x4-x3+x2. We then substitute x=1 and x=0 into the expression and subtract the resulting values from eachother. When x=1, (1/4)x4-3x3+x2=1/4 and when x=0, (1/4)x4-3x3+x2=0. (1/4)-0=1/4 and so that is our final answer to the question.

Answered by Jack T. Maths tutor

13026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the perpendicular bisector passing through the stationary point of the curve y=x^2+2x-7.


Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences