You are given a square which you are told has a total area of 100 squared centimetres. You are also told that one side of the square has dimension 4(3x + 2), and the other has dimension 8x - y. What are the values of x and y?

The first thing to know is that a square has equal sides, and that the area of a square is length x length.

Therefore in this case

Length x length = 100    or    Length= 100

ans so Length = square root of 100 = 10

Now we can say that 4(3x - 2) = 10

Multiply out the brackets  12x - 8 = 10

Add 8 to both sides   12x = 18

Divide both sides by 12     x = 18/12 = (18/6)/(12/6) = 3/2 = 1.5

Now we can substitute in this value for x into our other expession for the length.

8x - y = 10

8(1.5) - y = 10

12 - y = 10

Add y to both sides 12 = 10 + y

Subtract 10 from each side 2 = y

So we have x = 1.5 and y = 2

HA
Answered by Hannah A. Maths tutor

4580 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

v^2=u^2 + 2as u=12 a=-3 s = 18 Find v


Solve algebraically 6a + b = 16 & 5a - 2b = 19


Rearrange "(6y-30)/5 = 2x+(12/5)" so it reads "y = ... ". Sketch this line and label where it meets the axes.


Solve the equation [(3x + 3)/2x] + 2x - 1 = -3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning