A student titrates 25.00 cm3 of hydrochloric acid with 28.60 cm3 sodium hydroxide solution of concentration 0.200 moles per dm3. The equation for the reaction is: HCl + NaOH to NaCl + H2O. Calculate the concentration of the hydrochloric acid.

From the equation given in the question we can see that one mole of hydrochloric acid (HCl) reacts with one mole of sodium hydroxide (NaOH). 

The first thing to do is to work out the number of moles of sodium hydroxide that reacted by using the equation n = cv (number of moles = concentration x volume). 

To do this we need to convert the volume 28.60 cm3 into dm(which is the same as litres). There are 1000 cm3 in a dmso 

28.60 cm= 28.60 / 1000 dm= 0.0286 dm3

Now we can use n = cv = 0.200 moles per dm3 x 0.0286 dm= 0.00572 moles of sodium hydroxide

Since one mole of hydrochloric acid reacts with one mole of sodium hydroxide, 0.00572 moles of hydrochloric acid reacted.

We can now use the equation n=cv and rearrange it to c = n/v to find the concentration of hydrochloric acid. 

The volume of hydrochloric acid again needs converting to dm3:

25.00 cm3 = 25.00/1000 dm3 = 0.025 dm3

c = n/v = 0.00572 moles / 0.025 dm3 = 0.23 moles per dm3

HA
Answered by Hannah A. Chemistry tutor

21566 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

In fractional distillation the shorter hydrocarbons have lower boiling points and distil off first. Why?


A compound is found to contain 37.21% carbon, 7.75% hydrogen and 55.04% chlorine. What is it's empirical formula?


What is the trend in first ionisation energy across a period?


A batch of Titanium(iv) Chloride is electrolysed in a chemical plant. (a) State the type of bonding in Titanium(iv) Chloride and why it has to be molten in order to undergo electrolysis. (b) Explain why a DC current has to be be used for electrolysis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning