How do you find the area between two lines?

First, find the x coordinates of where the lines intersect by setting the equations of the lines equal to each other. Then solve the quadratic (or polynomial) equation. Next, integrate both lines individually with the limits being the x coodinates of the intersection. Then subtract the area of the lower line from the area of the upper line to find the area between the two.

For example:

Find the area between y=4x and y=x- 2x + 5.

To find the x coordinates, set them equal to each other and solve.

So... 4x = x- 2x + 5 => 0 = x- 6x + 5. Thus using either the quadratic formula or factorising, we find that these lines intesect when x=1 and x=5

Next, we need to integrate the lines between the limits found.

So... y=4x integrates to => [2x2] and when plugging in x=5, we get 50 and x=1 gives us 2. Thus the area of y=4x bound by the x axis, x=1 and x=5 is 50-2 = 48.

Similarly, y=x- 2x + 5 integrates to => [x3/3 - x2 + 5x]. Again, we put in x=5 and it gives 125/3 and x=1 gives us 13/3. Thus the area of y=x- 2x + 5 bound by the x axis, x=1 and x=5 is 125/3 - 13/3 = 112/3.

We know by ploting the graphs that y=4x is above y=x- 2x + 5. Hence, to find the area between these two lines is 48 - 112/3 = 32/3.

Answered by Rory P. Maths tutor

8067 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that f(x) = (x^2 + 3)(5 - x), find f'(x).


Find the integral of arctan(x)


What's the point of Maths?


How do we use the Chain-rule when differentiating?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences