A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.

The first thing to do as with any mechanics question is draw a force diagram with the weight (mg), the friction (F) and the normal reaction (R). As we are finding the smallest coefficient of friction possible, the block must be in limiting equilibrium, so the friction (F) = the coefficient of friction (x) multiplied by the normal reaction (R), so F = xR. Now we can resolve forces parallel and perpendicular to the slope to obtain two simultaeneous equations. Resolving perpendicular, we find that R = mgcos(a), and resolving parallel we find that xR = mgsin(a). By substituting the first equation into the second, we get xmgcos(a) = mgsin(a). By cancelling out the "mg" term from both sides, and dividing through by cos(a), we end up with x = sin(a) / cos(a), which of course leads to our final answer that x = tan(a).

OW
Answered by Ollie W. Physics tutor

4471 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

a ball is dropped from rest off a cliff of height 50m, determine the final velocity of the ball assuming no air resistance.


Using Fermat's Principle explain why it makes sense for light be refracted when crossing from one medium into another that has a different refractive index.


What is gravitational potential energy? Why is it negative?


Calculate the frequency of a simple pendulum of length 950 mm. Give answer to an appropriate number of significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning