Derive the following with respect to x1: y=(x1*x2)/(x1+x2).

y is a function of x1 and x2. We are asked to derive y with respect to x1, meaning that x2 remains constant. 

Note that y' is the derivative of y.

Both the numerator and denominator of the fraction contain x1. Therefore, we will need to follow the quotient rule of differentiation.

dy/dx1=[ (x1*x2)' *(x1+x2) - (x1x2)(x1+x2)' ] / [(x1+x2)2] ,   

dy/dx1=[x2*(x1+x2)-(x1*x2*1)]/  [(x1+x2)2],

Therefore: dy/dx1=x2/(x1+x2)  -  x1*x2/(x1+x2)2

TK
Answered by Thaleia K. Maths tutor

7801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


How do you differentiate y=x^x?


How do I differentiate "messy" functions?


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning