Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these substitutions: ∫x*ln(x) dx = ((1/2)x^2)*ln(x)- ∫(1/2)x dx = ((1/2)x^2)*ln(x)- (1/4)x^2 +c

AS
Answered by Ana S. Maths tutor

4096 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


A curve has the equation y = (1/3)x^3 + 4x^2 + 12x +3. Find the coordinates of each turning point and determine their nature.


The curve C has parametric equations x=2cos(t) and y=3cos(2t). Find and expression for dy/dx in terms of t.


How/when should I use the product rule for differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning