Integrate x*ln(x) with respect to x

First identify that integration by parts is required. Then seperate the integration so u = ln(x)     dv/dx = x then, du/dx = 1/x  v = (1/2)x^2 . And using the integration by parts formula with these substitutions: ∫x*ln(x) dx = ((1/2)x^2)*ln(x)- ∫(1/2)x dx = ((1/2)x^2)*ln(x)- (1/4)x^2 +c

Answered by Ana S. Maths tutor

3669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve to find sin x , 4cos^2 + 7sin x -7 =0


Curve C has equation y=(9+11x)/(3-x-2x^2). Find the area of the curve between the interval (0, 1/2). State your answer in exact terms.


How do I find the maximum/minimum of a function?


What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences