A curve is defined by the parametric equations x=t^2/2 +1 and y=4/t -1. Find the gradient of the curve at t=2 and an equation for the curve in terms of just x and y.

To find the gradient of the curve at t=2 we need to find an expression for dy/dx and then substitute in for t=2. We can make use of the chain rule to find this expression because dy/dx = (dy/dt)/(dx/dt) and these derivates are easier to calculate. From the parametric equations, dx/dt = t and dy/dt = -4/t^2. Therefore dy/dx = (-4/t^2)/t = -4/t^3. Now t=2 can be substituted in to find that the gradient at this point is -1/2.

In order to find an equation for the curve in terms of just x and y, we need to eliminate the t variable. Rearranging the y equation tells us that t=4/(y+1). Now this can just be substituted into the x equation to give x=8/(y+1)^2 + 1.

SC
Answered by Steven C. Maths tutor

8570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Perhaps an introduction to integration with a simple integral, e.g. the integral of x^2


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


A curve has equation x^2 + 2xy – 3y^2 + 16 = 0. Find the coordinates of the points on the curve where dy/dx =0


(1.) f(x)=x^3+3x^2-2x+15. (a.) find the differential of f(x) (b.) hence find the gradient of f(x) when x=6 (c.) is f(x) increasing or decreasing at this point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning