Answers>Maths>IB>Article

What is de Moivre's theorem?

de Moivre worked out a brilliant and beautiful way to solve complex equations.

If you for example have z3= 1 and you want to find all real and complex z that satisfy this equation. i is just a complex number written in rectangular form; z = 1 + i * 0 = cos(µ) + i sin(µ) . If you remember your specific angles for sine and cosine you want an angle that gets cosine(µ) = 0 and sine(µ)=1 so µ = 0+ 2nπ. Now, the + 2nπ is especially important for reasons you should see soon.

Rewrite i in euler form 1 = ei * (0 + 2nπ) = z3.  Now, if we take the cube root of both sides, that will be the same as taking it to the power of 1/3.

Remember your power rules: (ab)= ab * c. This will give you z = ei(0+n2π)/3. This is where the + 2nπ gets really important. If not, the answer would just be one. Put in the different values for n (n=0, n=1, n=2, etc) gives you your different angles. Plug them on your Argand diagram, and you get three different solutions: 

z= 1 ; z= ei 2π/3 and z2 = ei 4π/3

Hope it helped. If not, well take it in the session

FD
Answered by Frederik Dahl M. Maths tutor

2098 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find a and b (both real) when (a+b*i)^2=i.


Solve (sec (x))^2 + 2tan(x) = 0


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning