integrate by parts the equation dy/dx = (3x-4)(2x^2+5).

The equation we use to integrate by parts is

y = uv - v(du/dx) dx + c

so we separate dy/dx into u=(3x-4) and dv/dx=(2x2+5)

however we still need to find du/dx and v,

by differentiating u (bring the power down, make the power one less) we can find du/dx therefore du/dx = 3

to integrate dv/dx we need to add one to the power then divide by the new power so v = 2/3x3+5x

we can then substitute all of our values into the equation:

y = (3x-4)(2/3x3+5x) - ∫ 3(2/3x3+5x) dx +c

y = (3x-4)(2/3x3+5x) - ∫ 2x3+15x dx +c

y = (3x-4)(2/3x3+5x) - (1/2x4+15/2x2) +c

Answered by Abby H. Maths tutor

5417 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


Integrate 3x^4-4x^2+3/x


What is the integral of x^(3)e^(x) with respect to x?


Find the coordinates of the sationary points on the curve x^2 -xy+y^2=12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences