Differentiating equations of the type ln[f(x)]

To solve such equations we take advantage of log lawes to simplify the problem .

E.g

ln[sqrt(1-x2)] = ln[(1-x2)1/2] = 1/2ln[1-x2]

After simplifing the problem we can differentiate with respect to x 

y = 1/2ln[1-x2]

 let f(x) = 1-x2

Use the Chain rule 

dy/dx = dy/df * df/dx 

dy/df = 1/(2*f(x))

df/dx = -2x

dy/dx = - 1/2[  2x/( 1-x2  ) ]

Provides a good practice of chain rule. differentiating logarithms and properties of logs.

Answered by Mousa S. Maths tutor

2814 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


How do I differentiate: (3x + 7)^2?


How do I do binomial expansions for positive integer n?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences