Differentiating equations of the type ln[f(x)]

To solve such equations we take advantage of log lawes to simplify the problem .

E.g

ln[sqrt(1-x2)] = ln[(1-x2)1/2] = 1/2ln[1-x2]

After simplifing the problem we can differentiate with respect to x 

y = 1/2ln[1-x2]

 let f(x) = 1-x2

Use the Chain rule 

dy/dx = dy/df * df/dx 

dy/df = 1/(2*f(x))

df/dx = -2x

dy/dx = - 1/2[  2x/( 1-x2  ) ]

Provides a good practice of chain rule. differentiating logarithms and properties of logs.

MS
Answered by Mousa S. Maths tutor

3529 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 2^x, find dy/dx


x is an angle, if 180 > x > 90 and sinx = √2 / 4 what is the value of angle x


A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning