A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.

We first need to find dy/dx and we use the fact that dy/dx = dy/dt * dt/dx. So we have dy/dt = -6sin(3t) and dx/dt = 12cos(3t). Substituing these in we have dy/dx = -6*sin(3t)1/(12cos(3t) which simplifies to -(1/2)*tan(3t).
We now have dy/dx = -tan(3t)/2.

To find the second derivative we again have to derive w.r.t. t.
d2y/dx2 = d/dt(dy/dx)dt/dx and we have already found dt/dx as 1/(12cos(3t)).
So we have d/dt(-tan(3t)/2) = -3sec2 (3t)/2 and thus
d2y/ dx2 = -3
sec2 (3t)/2*(12*cos(3t)) which simplifies to - sec3 (3t) / 8 in terms of t.
In terms of y, we know y = 2 cos(3t) and therefore cos(3t) = y/2, thus cos3(3t) = y3/8 and sec3(3t) = 8/y3
Finally we have d2y/dx2=-1/y3.

Answered by Barnaby S. Maths tutor

5843 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find where the graph of y=3x^2+7x-6 crosses the x axis


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


A particle P moves with acceleration (-3i + 12j) m/s^2. Initially the velocity of P is 4i m/s. (a) Find the velocity of P at time t seconds. (b) Find the speed of P when t = 0.5


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences