A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.

Firstly, differentiate y with respect to x once to obtain the equation dy/dx = e^x + 40cos(4x). Then differentiate this resultant expression, with respect to x, to acquire a solution for (d^2)y/d(x^2) = e^x - 160sin(4x). The final step of this question is to substitute our value for x (x = pi/4) back into the equation for (d^2)y/d(x^2). This yields the result (d^2)y/d(x^2) = e^(pi/4) at the point x = pi/4.

Answered by Joe I. Maths tutor

2662 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the inverse of y = (5x-4) / (2x+3)


What is the chain rule and how is it used?


How do you differentiate a polynomial?


Differentiate y = (6x-13)^3 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences