A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.

Firstly, differentiate y with respect to x once to obtain the equation dy/dx = e^x + 40cos(4x). Then differentiate this resultant expression, with respect to x, to acquire a solution for (d^2)y/d(x^2) = e^x - 160sin(4x). The final step of this question is to substitute our value for x (x = pi/4) back into the equation for (d^2)y/d(x^2). This yields the result (d^2)y/d(x^2) = e^(pi/4) at the point x = pi/4.

Answered by Joe I. Maths tutor

2784 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate e^x^2


Factorise the following: 5a^3b^5-4ab^2


Solve the inequality x(x+2)>8 for x.


Make a the subject of 3(a+4) = ac+5f .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences