A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.

Firstly, differentiate y with respect to x once to obtain the equation dy/dx = e^x + 40cos(4x). Then differentiate this resultant expression, with respect to x, to acquire a solution for (d^2)y/d(x^2) = e^x - 160sin(4x). The final step of this question is to substitute our value for x (x = pi/4) back into the equation for (d^2)y/d(x^2). This yields the result (d^2)y/d(x^2) = e^(pi/4) at the point x = pi/4.

Answered by Joe I. Maths tutor

2906 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Ignoring air resistance and assuming gravity to equal 9.81. If a ball of mass 1kg is dropped from a height of 100m, calculate it's final velocity before it hits the ground.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


Differentiate sin(2x)/x^2 w.r.t. x


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences