A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.

Firstly, differentiate y with respect to x once to obtain the equation dy/dx = e^x + 40cos(4x). Then differentiate this resultant expression, with respect to x, to acquire a solution for (d^2)y/d(x^2) = e^x - 160sin(4x). The final step of this question is to substitute our value for x (x = pi/4) back into the equation for (d^2)y/d(x^2). This yields the result (d^2)y/d(x^2) = e^(pi/4) at the point x = pi/4.

JI
Answered by Joe I. Maths tutor

3234 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


How does integration work?


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning