Calculate the mass in grams of Iron (III) Chloride in a solution of 500 cm^3 which has a concentration of 0.200 mol/dm^3

First work out the moles of Iron (III) Chloride using the equation concentration = moles/volume, rearranging the eqaution in order to calculate moles gives moles = concentration x volume. Check the units!! Before calculating all the units must match, in this question the volume is given in cmso it must be converted into dm3 by dividing by 1000. moles = 0.2 x 500/1000 = 0.1 moles of Iron (III) Chloride Now we have to find the Mr of Iron (III) Chloride so we can use the equation Mass = Mr x moles The (III) denotes that the Iron has an oxidation state of +3 and so must be cancelled out by a negative charge of -3. Chloride ions have a charge of -1 as they are in group 7. So 3 Chloride ions are needed to cancel out the charges so the formula is FeCl Ar of Iron = 55.8; Aof Chlorine = 35.5 Therefore the Mof FeCl= 55.8 + 3 x 35.5 = 162.3 Finally substitute into the equation to find the mass. Mass = 162.3 x 0.1 = 16.2 g to 3 s.f.

Answered by Simon S. Chemistry tutor

10172 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A naturally occurring sample of the element boron has a relative atomic mass of 10.8 In this sample, boron exists as two isotopes. Calculate the percentage abundance of 10B in this naturally occurring sample of boron.


A) What assumptions are made about ideal gases. B) if 14g of an ideal gas is added to a 4 dm3 container at 210Kpa pressure and a temperature of 40oc how many moles were added and suggest the identity of the gas.


Predict the bond angles and shape of a molecule of ammonia.


Why do branch chained isomers have lower boiling point than straight chain equivalents?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences