A curve has the equation: x^4 + 2x -xy - y^3 - 10=0. Find dy/dx in terms of x and y.

We need to differentiate all values with respect to x. Therefore for the first two terms, multiply by the power and then subtract 1 from the original power. Therefore 4(x4-1) + (2)(2x2-1) which gives 4x3 + 4x for the first two terms.
For the 3rd term, it contains an x and y value. Differentiating x gives (1)(y) = y
Implicit differentiation is required for the y value, in which the rule d/dx (f(y)) = d/dy (f(y))dy/dx gives (x)(1)(d/dx) = xdy/dx 3. Again the 4th term requires to differentiated implicitly. This gives 3y2(dy/dx).
Therefore we end up with 4x3 + 4x - y -x(dy/dx) - 3y2(dy/dx) = 0 4. Finally, take all dy/dx terms to one side and take out dy/dx as a common term: 4x^3 + 4x -y = dy/dx (3y^2 +x)
Therefore dy/dx = (4x3 + 4x -y)/(3y2 +x)

Answered by John G. Maths tutor

5700 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


Find an equation of the curve with parametric equations x=3sin(A) and y=4cos(A), in the form bx^2+cy^2=d.


Use integration by parts to find the integral of ln x by taking ln x as the multiple of 1 and ln x


Prove that (root)2 is irrational


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences