A cuboid of height 5 cm has a base of side 'a' cm. The longest diagonal of the cuboid is 'L' cm. Show that 'a' = SQRT[ (L^2 - 25)/2]

A cuboid is made of squares and rectangles, with the diagonal 'L' connecting opposite corners of the 2 square faces. As the cuboids corners are all right angles, all the diagonals form right angled triangles, therefore, pythagoras can be applied to calculate L. As we have 2 unknowns, 'a' and 'L', we need to equate both L and 'a' to find the answer.

Applying Pythagoras: a2 = b2 + c2     therefore;    L2 = 52 + x2        where    x2 = a2 + a2 = 2*a2

L is the hypoteneuse of a large triangle, with '5 cm' being its height, and an unknown 'x' being its base. This unknown length is the hypoteneuse of the square bottom of the cuboid, which has lengths 'a'.

As we are finding an expression for 'a' we need to rearrange our equations so 'a' is the subject.

2*a2 =  L2 - 52

To find 'a' we then simply divide by 2 and find the square root.

JP
Answered by Joshua P. Maths tutor

4626 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A class of 10 students all complete a maths exam. Their marks are as follows: 67, 82, 48, 36, 55, 95, 19, 49, 62 and 73. Find the mean, median and range.


A is the point with coordinates (5, 9). B is the point with coordinates (d, 15). The gradient of the line AB is 3. Work out the value of d.


Purple paint is made by mixing red paint and blue paint in the ratio 5 : 2 Yan has 30 litres of red paint and 9 litres of blue paint. What is the maximum amount of purple paint he can make?


How do I simplify a surd?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning