A cuboid of height 5 cm has a base of side 'a' cm. The longest diagonal of the cuboid is 'L' cm. Show that 'a' = SQRT[ (L^2 - 25)/2]

A cuboid is made of squares and rectangles, with the diagonal 'L' connecting opposite corners of the 2 square faces. As the cuboids corners are all right angles, all the diagonals form right angled triangles, therefore, pythagoras can be applied to calculate L. As we have 2 unknowns, 'a' and 'L', we need to equate both L and 'a' to find the answer.

Applying Pythagoras: a2 = b2 + c2     therefore;    L2 = 52 + x2        where    x2 = a2 + a2 = 2*a2

L is the hypoteneuse of a large triangle, with '5 cm' being its height, and an unknown 'x' being its base. This unknown length is the hypoteneuse of the square bottom of the cuboid, which has lengths 'a'.

As we are finding an expression for 'a' we need to rearrange our equations so 'a' is the subject.

2*a2 =  L2 - 52

To find 'a' we then simply divide by 2 and find the square root.

Answered by Joshua P. Maths tutor

4246 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.


1: x = 2, 2: y = x + 5 -> Solve this pair of simultaneous equations.


Frank owns an ice cream van. When he bought the van five years ago and an ice cream cost £1.50. If the price of an ice cream increases by 3% a year how much does an ice cream cost now?


AQA, foundation 2016: Lee does a sponsored silence for 2.25 hrs. He is sponsored 80p per minute. How much does he raise?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences