Why don't Hydrocarbons and Water Molecules mix, and why might an emulsifier fix this?

Hydrocarbons are long chained, non-polar molecules of Carbon and Hydrogen. As the chain length increases the boiling point of oil increases and the intermolecular forces get stronger. At smaller chain lengths molecules are volatile and become a gas easily as these forces are weak. The 'Van der Waals' forces which hold these molecules are strong when molcules are long.

Water is a small molecule, however due to the electrostatic pull of the oxygen molecule on the hydrogen's electrons, it is also very polar. Electrostatic forces between positively charged hydrogen atoms and negatively charged oxygen atoms are much stronger than the van der Waals forces from the oil; therefore water molecules attract each other very strongly, and other polar molecules. As they form only very weak interactions with hydrocarbons, they separate.

Emulsifiers contain a polar and non-polar part of the molecule; therefore one part of the molecule can attract water and one part can attract the hydrocarbon, helping the two types of molecule mix.

Answered by Joshua P. Chemistry tutor

5899 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

85 cm^3 of 0.05 mol/dm^3 sulfuric acid is used to neutralise 15 cm^3 of sodium hydroxide of an unknown concentration. Given that the chemical formula of the reaction is 2NaOH + H2SO4 => NA2SO4 + 2H2O, find the concentration of the sodium hydroxide.


what forces hold the ions together in an ionic compound?


Explain how the structure of metals allow them to form metallic bonds.


What is an equilibrium?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences