Solve the simultaneous equations (1) x + 3y = 7 and (2) 2x + y = 4

It's impossible to solve an equation with two unknowns (x and y) so we must find a way to get rid of either x or y before solving an equation. Using substitution rearrange the equation 1 so x is the only term on one side of the equation by subtracting 3y from both sides leaving: x = 7 - 3y. Substitute that into the second equation to get 2(7 - 3y) + y = 4 Expand the brackets 14 -5y = 4 which rearranges to 5y = 10 so y = 2 Substitute y = 2 back into equation 2 to get 2x + 2 = 4 which gives x = 1 Using elimination multiply equation (1) by 2: 2x + 6y =14. Both equations now contain 2 lots of x Subtract equation 2 from equation 1 to eliminate x 5y = 10 so y = 2 Substitute y = 2 into equation 2 2x + 2 = 4 so x = 1

SS
Answered by Simon S. Maths tutor

4138 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show that AB is not parallel to CD.


Sue has 2 cats. Each cat eats 1 4 of a tin of cat food each day. Sue buys 8 tins of cat food. Has Sue bought enough cat food to feed her 2 cats for 14 days? You must show how you get your answer.


The first floor of an ancient japanese tower has 150 steps. Each floor above has 5 fewer floors than the previous. So, the second floor has 145 steps, the third 140 etc. How many floors does the tower have if the final floor has 30 steps leading to it.


Rearrange to make x the subject of the equation: 4(3x+y) = 12-2y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences