Find dy/dx for y = x^3*e^x*cos(x)

In this problem, we see that y is a product of 3 functions of x. That means that in order to find dy/dx we need to use the product rule. The product rule tells us that in this case we should differentiate one function at a time, keeping the others unchanged. That would mean that we will end with 3 terms - one for each function that we differentiate - multiplied by the other 2. So the solution here will be: firstly: d(x3 )/dx= 3x2 secondly: d(ex)/dx = ex thirdly: d(cos(x))/dx = -sin(x) and so the solution is: dy/dx = 3*x2*ex*cos(x) + x3*ex*cos(x) + x3ex(-sin(x))

LN
Answered by Lyudmil N. Maths tutor

9677 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


Express [1+4(square root)7] /[ 5+ 2(square root)7] in the form m + n (square root)7 , where m and n are integers.


What is a derivative and how are they used?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences