Find dy/dx for y = x^3*e^x*cos(x)

In this problem, we see that y is a product of 3 functions of x. That means that in order to find dy/dx we need to use the product rule. The product rule tells us that in this case we should differentiate one function at a time, keeping the others unchanged. That would mean that we will end with 3 terms - one for each function that we differentiate - multiplied by the other 2. So the solution here will be: firstly: d(x3 )/dx= 3x2 secondly: d(ex)/dx = ex thirdly: d(cos(x))/dx = -sin(x) and so the solution is: dy/dx = 3*x2*ex*cos(x) + x3*ex*cos(x) + x3ex(-sin(x))

LN
Answered by Lyudmil N. Maths tutor

10157 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


Matthew gets £100 for his 16th birthday and chooses to invest the money into a bank with a 2% annual interest rate. By which birthday will Matthew have more than £150 in his account?


Find the first differential with respect to x of y=tan(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning