Find dy/dx for y = x^3*e^x*cos(x)

In this problem, we see that y is a product of 3 functions of x. That means that in order to find dy/dx we need to use the product rule. The product rule tells us that in this case we should differentiate one function at a time, keeping the others unchanged. That would mean that we will end with 3 terms - one for each function that we differentiate - multiplied by the other 2. So the solution here will be: firstly: d(x3 )/dx= 3x2 secondly: d(ex)/dx = ex thirdly: d(cos(x))/dx = -sin(x) and so the solution is: dy/dx = 3*x2*ex*cos(x) + x3*ex*cos(x) + x3ex(-sin(x))

Answered by Lyudmil N. Maths tutor

9342 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^3*(x^2+1)


The equation kx^2+4kx+5=0, where a is a constant, has no real roots. Find the range of possible values of k.


Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y


Integrate x*ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences