f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.

(a) Let y=f(x). Then y = (2x+1)/(x-1). Rearrange the equation to get x in terms of y to obtain the inverse function. This gives x=(1+y)/(y-2). So the inverse of f is f-1(x)=(1+x)/(x-2) (b) Drawing a graph of f(x) gives a vertical asymptote at x=1 and a horizontal asymptote at y=2. This is because for large values of x, f(x) tends to 2x/x = 2. For values of x>1, the graph shows that f(x)>2. Note that the domain of f(x) is x>3, and f(3) = 3.5. So the range of this function is in fact restricted to 2 (c) Recall from part (a) that f-1(x)=(1+x)/(x-2). By taking f-1 on both sides of the equation fg(x)=3, we get  f-1fg(x)=f-1(3). Note that  f-1f(x)=x so this gives g(x)= f-1(3)=4. So g(x)=x+5=4 giving x= -1.

Answered by Lutfha A. Maths tutor

4340 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the "chain rule"?


Given the equation 0=5x^2+3xy-y^3 find the value of dy/dx at the point (-2,2)


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


How to differentiate using the chain rule


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences