f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.

(a) Let y=f(x). Then y = (2x+1)/(x-1). Rearrange the equation to get x in terms of y to obtain the inverse function. This gives x=(1+y)/(y-2). So the inverse of f is f-1(x)=(1+x)/(x-2) (b) Drawing a graph of f(x) gives a vertical asymptote at x=1 and a horizontal asymptote at y=2. This is because for large values of x, f(x) tends to 2x/x = 2. For values of x>1, the graph shows that f(x)>2. Note that the domain of f(x) is x>3, and f(3) = 3.5. So the range of this function is in fact restricted to 2 (c) Recall from part (a) that f-1(x)=(1+x)/(x-2). By taking f-1 on both sides of the equation fg(x)=3, we get  f-1fg(x)=f-1(3). Note that  f-1f(x)=x so this gives g(x)= f-1(3)=4. So g(x)=x+5=4 giving x= -1.

LA
Answered by Lutfha A. Maths tutor

5267 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.


Given y = 2x(x2 – 1)5, show that (a) dy/dx = g(x)(x2 – 1)4 where g(x) is a function to be determined. (b) Hence find the set of values of x for which dy/dx > 0


If y = 1/x^3, find an expression for dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning