A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.

To anwser this question we need to find a linear equation of the form y=mx+c which we can rearrange to give the desired equation. Firstly, we must find the gradient at the point S given by dy/dx. Using the parametric equations we have dx/dt=2t-1 by standard differentiation and dy/dt=4/(1-t)^2 by the quotient rule of differentiation. We can know find the gradient of the line at the point S. dy/dx=(dy/dt)/(dx/dt)=4/(2t-1)(1-t)^2 and t=-1 at the point S leaving us with gradient m=-1/3. We now have an equation of the form y=-(1/3)x+c. We know x=2, y=-2 at S given t=-1. We can now find c by substituting the values of x and y into our equation and rearranging to find c=-4/3. We are left with y=-(1/3)x-(4/3) which if we multiply through by 3 and rearrange to get a 0 on one side of the equation we are left with x+3y+4=0 which is what we want.

Answered by Marcus F. Maths tutor

7270 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When given an equation in parametric form, how can you figure out dy/dx?


Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


Integrate (x^2)(e^x) with respect to x


(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences