If a_(n+1) = a_(n) / a_(n-1), find a_2017


We are given; a1 = 2, a2 = 6 an+1 = an / an-1 And we want to find a2017. The question is hard because if we tried simply applying the formula to get an answer, we would have to do it thousands of times. We want an+1 to depend on other terms of the sequence as little as possible. Right now it depends on two of them. But if we apply the recursive formula to an, we get this: an+1 = an / an-1 = (an-1 / an-2) / an-1 = 1/an-2         (only works if n ≥ 3) Equivalently: an+3 = an            (for all n ≥ 1) This is perfect! It means that if you only look at every third term of the sequence, the terms just keep being "flipped". a1 = 2 a3+1 = 1/2 a6+1 = 2 a9+1 = 1/2 ... a2016+1 = 2 This works out because 2016 is an even multiple of 3, so we know that the 2 has been inverted an even amount of times - that's the same as not flipping it at all. Awesome right?

Answered by Théodore L. MAT tutor

2047 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let a and b be positive integers such that a+b = 20. What is the maximum value that (a^2)b can take?


How many distinct solutions does the following equation have? log(base x^2 +2) (4-5x^2 - 6x^3) = 2 a)None, b)1, c)2, d)4, e)Infinitely many


Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.


How do you differentiate ln(f(x))? Tricks like these occur commonly in STEP questions (including one I was looking at earlier today).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences