What is the Product Rule?

The product rule is used when differentiating two functions that are multiplied by eachother. The formula for the product rule is: 

U (dv/dx) + V (du/dx)    where 'dv/dx' is the differential of the function, V.

For example: 

y=(x2 + 3)(2x +5) .... we label the first bracket as U and the second as V.

To find dy/dx we apply the product rule:

U= (x2 + 3)      du/dv= 2x as we differentiate any x variable by bringing the power down to the front and then minusing                                       one from the power)

V= (2x+5)        dv/dx= 2

Therefore, applying the product rule gives: 

(x2 +3)2 + 2x(2x+5) = 4x2 + 10x + 6

Answered by Abbie W. Maths tutor

3001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a circle is x^2-6x+y^2+4y=12. Complete the square to find the centre and radius of the circle.


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Find dy/dx of 5x^2 + 2y^3 +8 =17.


Integrate (3x^2+2x^-1) with respect to x in the range of K to 3 and explain why K cannot be 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences