A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).

i) Using the power rule, f'(x) = 3x2 - 6x ii) To find stationary points, set f'(x) to 0: 3x2 - 6x = 0. 3x(x - 2) = 0. x = 0  or  x = 2 So the co-ordinates are (0,f(0)) = (0, 1), and (2,f(2)) = (2,-3).

SS
Answered by Sam S. Maths tutor

4856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


Integrate e^x sinx


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


Use the chain rule to show that, if y = sec(x), then dy/dx = sec(x)tan(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences