Prove 2^n >n for all n belonging to the set of natural numbers

for n=1 2^1=2  2>1 hence true for n=1 assume true for n then 2^n >n we need to show 2^n+1 > n+1 since 2^n >n 2^n+1 >2n =n+n >n+1 for n>1 hence by induction since true for n= 1 and if true for n then true for n+1 the statement is true for all natural numbers

MM
Answered by Matthew M. Maths tutor

3601 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate (4cos^4 x -4cos^2x+1)^1/2


What is an improper fraction, and how to I make thisproper so that it can be differentiated?


Integrate f(x)=lnx


Show that 2sin(x) =(4cos(x)-1)/tan(x) can be written as: 6cos^2(x)-cos(x)-2=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning