How do you differentiate y=cox(x)/sin(x)?

Since we have to differentiate a fraction, we must use the quotient rule. 

The quotient rule: If y = u/v, dy/dx = (vdu/dx - udv/dx)/v2

So we must work out each of the terms u, v, du/dx and dv/dx from the question:

u = cos(x), v = sin(x), du/dx = -sin(x) , dv/dx = cos(x)

Plugging these into the equation given by the quotient rule gives:

dy/dx = (sin(x)*-sin(x) - cox(x)*cos(x))/(sin(x))2

= -(sin(x)+ cos(x)2)/(sin(x))2 

= -1/(sin(x))

Side note: this is equal to -(cosec(x))

The answer can also be obtained by rewriting the question as y = cos(x)*(sin(x))-1 and then using the product rule, with u = cos(x) and v = (sin(x))-1 . This is always possible - so if time allows, the question can be repeated using each method (the quotient rule and the product rule). If the same answer is obtained from each method, then you know it's right! 

Answered by Raj C. Maths tutor

4748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


The line AB has equation 3x + 5y = 7 (a. Find the gradient of AB)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences