C4 June 2014 Q4: Water is flowing into a vase. When the depth of water is h cm, the volume of water V cm^3 is given by V=4πh(h+4). Water flows into the vase at a constant rate of 80π cm^3/s. Find the rate of change of the depth of water in cm/s, when h=6.

This question wants us to find: dh/dt. We are given: dV/dt=80π and V=4πh(h+4). The equation to use here is: dh/dt = dh/dV x dV/dt. We know dV/dt, but still need to find dh/dV. For this, we can use the reciprocal of dV/dh, which can be found be differentiating the given equation of for V as a function of h. Differentiating we find: dV/dh = 8πh+16π. Therefore: dh/dV = 1/(8πh+16π). Substituting into connected rate of change equation: dh/dt = 1/(8πh+16π) x 80π. This simplifies to: dh/dt = 10/(h+2) At h=6: dh/dt = 10/(6+2) = 1.25 cm.s-1.

SK
Answered by Suban K. Maths tutor

8424 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate y = xcos(x)


Find the derivative of f(x)=x^2log(2x)


The points A and B have coordinates (3, 4) and (7, 6) respectively. The straight line l passes through A and is perpendicular to AB. Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.


How/when should I use the product rule for differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning