Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0

We use the quotient rule to find dy/dt. Let u = 4t and v = (t^2 + 5). Then, u' = 4 and v' = 2t. Hence,

dy/dt = u'v - v'u / v= 4(t^2 + 5) - 4t x 2t / (t^2 + 5)= 20 - 4t/ (t^2 + 5)2.  Now, we need to find all t such that dy/dt < 0 i.e.

20 - 4t/ (t^2 + 5)2 < 0 which rearranges to give t2 > 5, so, t > 51/2 and t < -51/2.

JH
Answered by Jonathan H. Maths tutor

3984 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= 2^x


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


Rationalise the surd: 2/root(x)


Prove by contradiction that sqrt(3) is irrational. (5 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning