Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0

We use the quotient rule to find dy/dt. Let u = 4t and v = (t^2 + 5). Then, u' = 4 and v' = 2t. Hence,

dy/dt = u'v - v'u / v= 4(t^2 + 5) - 4t x 2t / (t^2 + 5)= 20 - 4t/ (t^2 + 5)2.  Now, we need to find all t such that dy/dt < 0 i.e.

20 - 4t/ (t^2 + 5)2 < 0 which rearranges to give t2 > 5, so, t > 51/2 and t < -51/2.

Answered by Jonathan H. Maths tutor

3510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


Differentiate F(x)=(25+v)/v


Integral between 0 and pi/2 of cos(x)sin^2(x)


Express 3/2x+3 – 1/2x-3 + 6/4x^2-9 as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences