Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0

We use the quotient rule to find dy/dt. Let u = 4t and v = (t^2 + 5). Then, u' = 4 and v' = 2t. Hence,

dy/dt = u'v - v'u / v= 4(t^2 + 5) - 4t x 2t / (t^2 + 5)= 20 - 4t/ (t^2 + 5)2.  Now, we need to find all t such that dy/dt < 0 i.e.

20 - 4t/ (t^2 + 5)2 < 0 which rearranges to give t2 > 5, so, t > 51/2 and t < -51/2.

Answered by Jonathan H. Maths tutor

3248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


i) differentiate xcos2x with respect to x ii) integrate xcos2x with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences