Explain the substitution reaction of a primary halogenoalkane with sodium hydroxide.

First of all, it is important to determine what kind of substitution reaction the halogenoalkane will undergo. We are given the information that it is a primary halogenoalkane, which generally undergo a SN2 reaction. 'S' standing for substituion, 'N' for nucleophilic, and '2' standing for bimolecular. The reaction is SN2 and not SN1 as the carbon centre is not sterically hindered (the nucleophile is able to 'barge' through), so attack by the nucleophile is possible. Furthermore, the transition state is more stable than the carbo-cation that would otherwise be formed.

In this particular case, the hydroxide ion attacks the carbon atom attached to the bromine in the bromoethane, as it has a partial +'ve charge, forming a high-energy transition state. The the carbon centre being bonded both to the hydroxide ion and halide ion for an intensely short period of time (imagine a weightlifter with two extremely heavy dumbells being carried by both arms). The reaction proceeds with the halide ion 'breaking off' heterolytically, the carbon-hydroxide bond being fully made, and the new subsituted product, ethanol, being formed. The second-step is the rate-determing step, thus a second-order reaction. 

RS
Answered by Rutger S. Chemistry tutor

4965 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Explain why transition metals form coloured compounds when bonded to a ligand.


Explain whether phosphine or ammonia has a higher boiling point


Describe and compare three features of the structure and bonding in the three allotropes of carbon: diamond, graphite and C60 fullerene.


How can we determine the molecular and electron geometry of H2O?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning