Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).

When dealing with complex numbers and trigonometric functions, always turn to DeMoivre's Theorem that states [cos(θ)+isin(θ)]n = [cos(nθ)+isin(nθ)]. If we set n=2, the we see a combination of cos(2θ) and sin(2θ) on the right hand side. From here, we can expand the left hand side, just like we would with a normal quadratic expression, giving us: cos2(θ) + 2cos(θ)(isin(θ)) + (isin(θ))2. This can then be simplified to cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) as i= -1 by definition. Combining the right hand side and the left hand side gives: cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) = cos(2θ)+isin(2θ) We can then equate real and imaginary parts of the equations to give: cos2(θ) - sin2(θ) = cos(2θ) and 2cos(θ)(isin(θ)) = isin(2θ), and therefore 2cos(θ)sin(θ) = sin(2θ).

TK
Answered by Thomas K. Maths tutor

8559 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the general rule for differentiation?


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning