Using complex numbers, derive the trigonometric identities for cos(2θ) and sin(2θ).

When dealing with complex numbers and trigonometric functions, always turn to DeMoivre's Theorem that states [cos(θ)+isin(θ)]n = [cos(nθ)+isin(nθ)]. If we set n=2, the we see a combination of cos(2θ) and sin(2θ) on the right hand side. From here, we can expand the left hand side, just like we would with a normal quadratic expression, giving us: cos2(θ) + 2cos(θ)(isin(θ)) + (isin(θ))2. This can then be simplified to cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) as i= -1 by definition. Combining the right hand side and the left hand side gives: cos2(θ) - sin2(θ) + 2cos(θ)(isin(θ)) = cos(2θ)+isin(2θ) We can then equate real and imaginary parts of the equations to give: cos2(θ) - sin2(θ) = cos(2θ) and 2cos(θ)(isin(θ)) = isin(2θ), and therefore 2cos(θ)sin(θ) = sin(2θ).

Answered by Thomas K. Maths tutor

7278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


When and how do I use integration by parts?


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences